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Abstract. This paper studies theζ function ζα(s) = ∑
n(jαn/π)−s built from the zeros

jαn of the Bessel functionJα(z). The known first eight terms of the McMahon expansion
jαn ∼ (n + a)[1 − ∑

p>1 bp(a)(n + a)−2p ] with a = (2α − 1)/4 are used to construct an
accurate approximation toζα(s). The quality of this approximation is investigated numerically
by comparison with a known but (at least numerically) little-studied integral formula forζα(s).
Excellent numerical agreement is found for fixedα and variable (real)s, and for fixed s

and variableα. Both formulae forζα(s) therefore seem to work well. Our approximation
also accurately reproduces known special values ofζα(s). Important properties ofζα(s) are
investigated for the first time, including several of its zeros. In addition, some general theory
is presented in two areas: (i) perturbed spectra and (ii) the interrelationship between functions
like Jα(z) representable as infinite products, and theζ functions constructed from their infinite
spectrum of zeros.

1. Introduction

Among many possible generalizations of the Riemann zeta functionζ(s) = ∑∞
1 n−s to

spectra more complicated than the spectrum of positive integers{n}, one certain to play a
major role in physical problems is the ‘Besselζ function’ [1–4] first studied by Hawkins
[1]

ζα(s) ≡
∞∑

n=1

(jαn/π)−s Res > 1 α > 1
2 (1.1)

where jαn are the positive zeros of the Bessel functionJα(z) : Jα(jαn) = 0. ζα(s) is
sometimes called the Raleigh function, especially fors = 2, 4, 6, . . . [5–7]. ζα(s) is for
α > 1

2 a continuously, quite nontrivially distorted version of the Riemannζ function

ζ(s) = ζ 1
2
(s). It is clear from J 1

2
(z) = (2/πz)

1
2 sinz that jαn/π → n, ζα(s) → ζ(s)

smoothly asα → 1
2. For α > 1

2 the spectrum{jαn/π} is perturbed away from the
spectrum of positive integers{n}, with the strength of the perturbation increasing asα

increases. However, there always remains a one-to-one connection between{n} and{jαn/π}.
Moreover, the distortion weakens as one looks higher in the spectrum. This is expressed
quantitatively by McMahon’s asymptotic expansion

jαn/π ∼ (n + a)[1 − δαn] n � α

δαn =
∞∑

p=1

bp(a)(n + a)−2p a = 1
4(2α − 1).

(1.2)
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Standard references [5, 8] usually give the first four coefficientsbp(a). One finds the first
seven of them in [9] (see also the appendix below). These functions ofa (or α, however
we prefer to use parametera here) are polynomials. Theζ function ζα(s) has its leading or
rightmost pole ats = 1 with residueR0 = 1, coincident with the pole and residue ofζ(s).
It has additional poles ats = −1, −3, −5, . . .:

ζα(1 − 2n + ε) = 1

ε
Rn(a) + Cn(a) + εDn(a) + · · · n = 0, 1, 2, . . . . (1.3)

The residuesRn(a) are polynomials ina (sometimes called Hawkins’ polynomials [2, 10])
constructed from thebp. The first few residues have been known for some time [1–4]. All
theRn with n > 0 necessarily have a (simple) zero ata = 0 orα = 1

2. At present, little infor-
mation is available on the finite partsCn(a) which are far more complicated than polynomi-
als. These, like theRn, are needed for quantum field theory. Moreover, just asζ(s) has the
especially simple special valuesζ(−2n) = 0, n = 1, 2, 3, . . ., ζα(s) has polynomial values
ζα(−2n) at the same points [1, 2]. These (Hawkins) polynomials have simple zeros ata = 0
(α = 1

2). Finally, there are the Raleigh functions [5–7]ζα(2n) = Pn(α)/Qn(α) which are
rational functions ofα. The Raleigh polynomialsPn(α) in the numerator have an interesting
structure while the denominatorQn(α) is a relatively uninteresting product of binomials.

The main purpose of the present article is to gain increased computational control
over ζα(s) in the region Res < 1 accessible only by analytic continuation of the defining
series (1.1). For the reader’s convenience and our own we first review in section 2, as
compactly as possible, the bulk of existing work onζα(s). Then we use the asymptotic
expansion (1.2) to obtain an approximation toζα(s) based on the Hurwitzζ functionζ(s, a).
This approximation makes analytic continuation explicit and straightforward. The use of
equation (1.2) in this way is not new. Previous authors have either expanded in powers of
n−1 rather than(n+ a)−1 (which is numerically less efficient for largea) or they have used
very few terms in equation (1.2) (which of course sharply diminishes accuracy). Our goal
is computational capability, for application in quantum field theory. In pursuing it we have
taken this use of the McMahon expansion to a new level.

In section 4 we construct from the seven known coefficientsbp(a) in equation (1.2) our
approximation toζα(s). The notation of equation (1.2) is retained so that, when additional
bp(a) for p > 8 are known, one can easily improve the approximation. We shall compare
our approximation numerically with an integral formula [11] forζα(s) reviewed in section 2.
The agreement is quite good out toα = 50 and higher for thes values tested, and over the
range−6 < s < 1 for selectedα values.

Our work in section 4 makes use of a general procedure which can be applied to an
arbitrary distortion{λn} → {λn(1 − δn)}, δn → 0 asn → ∞, of any known spectrum{λn}.
This part of the derivation is presented separately in an appropriately general notation in
section 3. It should be useful in other problems as well.

Let us now turn to physics, and one type of physical problem in which the spectrum
(1.2) and other comparably distorted spectra occur.

The spectrum{n} of positive integers is the{[eigenvalue]
1
2 } of the operator [−d2/dx2]

on the interval [0, π ] with Dirichlet endpoints. The eigenfunctions areφn(x) ∝ sin(nx).
Note that this spectral problem can be recast in Schrödinger form[
− d2

dx2
+ D(x) + D(x − π) + V (x)

]
φn(x) = k2

nφn(x) − ∞ < x < ∞ (1.4)

with V (x) = 0 everywhere andkn = n in the interval 06 x 6 π . Outside this interval
kn > 0 is continuous.D(x) andD(x − π) represent the Dirichlet conditions at the points
x = 0, π , respectively.
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The spectrum{jαn/π} is the {[eigenvalue]
1
2 } of the Schr̈odinger problem (1.4) with

Bessel potentialVB(x) = (α2 − 1
4)/x2. There are still Dirichlet conditions atx = 0, π . The

conditionD(x) is redundant unlessα = 1
2, in which case we are back to the system with two

Dirichlet point boundaries. Forα > 1
2 the eigenfunctions areφn(x) = constant(x)

1
2 Jα(knx)

with kn = jαn/π in the interval 06 x 6 π .
In the general Schrödinger problem (1.4) with impenetrable boundaries atx = 0, π

the static potentialV (x) > 0 represents static spatial structure semitransparent to the
wavefunction. If we are doing quantum field theory (hereafter QFT), then the Dirichlet
boundaries atx = 0, π and the background spatial structure represented byV (x) become
parts of a Casimir system in which the quantum fieldφ̂(x) constructed from the modes
φn(x) interacts with—and is distorted into spatial nonuniformity by—all of these objects.
The field φ̂(x) exerts back forces, orCasimir forces, on all objects causing its distortion.
The Bessel potentialVB(x) above, which leads to the spectrum{jαn/π}, can be interpreted
as ‘surface texture’ added to the Dirichlet boundary atx = 0 by the introduction ofVB(x).
We call this ‘semihardening’ of the Dirichlet boundary [12–14]. The field-theory aspect
will be de-emphasized in this article, but it is always present in the authors’ thinking, and
it perhaps should be in the reader’s as well. The spectrum{jαn/π} is generated by the
Bessel potential. A different semihard potentialV (x) would generate a different spectrum
{kn}. There is always a one-to-one connection between the spectrum{kn} and the semihard
potentialV (x) used. The latter is, by definition, a potential withV (0) = ∞ (like VB(x))
and typicallyV (x) decreases to zero far from the boundary. Ultimately we want to think
in terms of arbitrary distortions of spectra which can be understood in the context of the
Schr̈odinger problem (1.4) as expressing some change in the potentialV (x). This is the
main physical background for the work presented in the present article.

2. Infinite products and their zeta functions

A function such as

Jα(z) = zα

2α0(α + 1)

∞∏
n=1

[
1 − z2

j2
αn

]
(2.1)

which has infinitely many zeros and an infinite product representation in terms of them also
(under certain assumptions about the spectrum of zeros) has aζ function—ζα(s) in the case
of Jα(z). Although very different from each otherJα(z) and ζα(s) are deeply interrelated
and either function can be used to study the other. The integral formula (2.31) below shows
particularly clearly how to obtainζα(s) from Jα(z). Equations (2.22) and (2.25) below show
how Jα(z) is computed fromζα(s). Certainly the interrelationship betweenζα(s) andJα(z)

is not specific to these functions, but rather is common to all functions which have infinite
product representations andζ functions built from their spectrum of zeros. For this reason
we begin our discussion at a fairly general level, and later specialize to the Bessel function.

2.1. General theory

Consider an entire functionF(z) with infinitely many zeros on the positive real axis at
z = an > 0 and infinitely many zeros on the negative real axis atz = −bn < 0:

F(z) =
{ ∏

n

[
1 − z

an

]
ez/an

}{ ∏
m

[
1 + z

bm

]
e−z/bm

}
0 < a1 6 a2 6 a3 6 . . . 0 < b1 6 b2 6 b3 6 . . . .

(2.2)
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The zerosz = an may be simple or they may be of higher order. In the latter case two or
more of thean coincide. The same is true of the zerosbm. For simplicity F(0) = 1 and
F ′(0) = 0 are chosen. This representation—a standard topic in analysis (see e.g. [15])—
assumes the spectra{an}, {bm} of zeros extend all the way to infinity. This makes these
spectra suitable for definingζ functions:

A(s) ≡
∑

n

a−s
n Res > 1

B(s) ≡
∑
m

b−s
m Res > 1.

(2.3)

Although one could be more general, we choose to work within the framework of boundary
semihardening which assumes an asymptotic behaviour like that in equation (1.2):

an ∼ nπ [1 + δn] δn → 0 n → ∞
bm ∼ mπ [1 + δ′

m] δ′
m → 0 m → ∞.

(2.4)

Let us also emphasize that both the entire function (2.2) and theζ functions (2.3) are
completelydetermined by the spectra{an}, {bm}.

Taking the log of equation (2.2) yields

ln F(z) =
∑

n

[
z

an

+ ln

(
1 − z

an

)]
+

∑
m

[
− z

bm

+ ln

(
1 + z

bm

)]
= −

∞∑
k=2

zk 1
2[A(k) + (−)kB(k)]. (2.5)

Here both seriesA(k), B(k) are convergent fork > 2. Moreover, the expansions of
ln(1 − z/a) and ln(1 + z/b) converge for(z/a)2 < 1 and(z/b)2 < 1, respectively. Thus
for |z| < min(a1, b1) one can freely commute summations, and the result is equation (2.5)
which is exact. The coefficients in the ascending power series for lnF(z) are given by
special valuesA(k), B(k) of the ζ functions (2.3).

If the spectra{an}, {bm} are identical(an = bn) as is the case for the Bessel function
(2.1), thenA(s) = B(s) and equations (2.2), (2.5) become

F(z) =
∏
n

[1 − z2/a2
n] (2.6)

ln F(z) = −
∞∑

k=1

1

k
z2kA(2k). (2.7)

Keepingan = bn let us now do something less conservative mathematically. First define

G(z) = F(iz) =
∏
n

[1 + z2/a2
n] (2.8)

whose logarithm is

ln G(z) =
∞∑

k=1

(−)k+1 1

k
z2kA(2k). (2.9)

This ascending power series can, of course, be obtained directly from equation (2.7). More
interesting is to find the asymptotic series for lnG(z) in 1/z:

ln G(z) =
∑

n

[
ln

z2

a2
n

+ ln

(
1 + a2

n

z2

)]
= A(0) ln z2 + 2A′(0) + lim

s→0

∑
n

a−s
n ln(1 + a2

n/z
2) (2.10)
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where

A(0) =
∑

n

(an)
0 A′(0) = −

∑
n

ln an. (2.11)

To evaluate the remaining mode sum on the right in equation (2.10) in terms ofA(s) we
recognize this series as belonging to the class first studied for a general spectrum in [16].
In the notation of that paper,

f (z) = ln(1 + z2) =
∞∑

k=0

(−)k
1

k + 1
z2k+2

so thatC(k) = (k + 1)−1 and a = b = 2. MoreoverB = 1 follows from equation (2.4).
Directly from equations (2.1), (2.3) and (2.5a) of [16] we find

lim
s→0

∑
n

a−s
n ln(1 + a2

n/z
2) =

∞∑
k=0

(−)k
1

(k + 1)z2k+2
A(−2k − 2)

+
{

−
∞∑

n=0

πrn

(1n − 1)z1n−1 cosπ
2 1n

}
p

+ { }ex (2.12)

where some labelling from [16] is temporarily retained for clarity. In the curly bracket{ }p
the rn are residues of the poles ofA(s):

A(1 − 1n + ε) = 1

ε
rn + cn + O(ε) n = 0, 1, 2, . . . 0 = 10 < 11 < 12 < · · · .

(2.13)

The asymptotic behaviour assumed in equation (2.4) dictates that the rightmost pole is at
s = 1 and has residuer0 = 1/π . Pole positionss = 1 − 1n and residues further to the left
depend on the spectrum{an}. The other curly bracket{ }ex in equation (2.12) represents an
unknown exponentially small (inz) function which we discard, giving our final result for
ln G(z) the character of an asymptotic series:

ln G(z) ∼ A(0) ln z2 + 2A′(0) + z +
∞∑

k=0

(−)k
1

(k + 1)z2k+2
A(−2k − 2)

−
∞∑

n=1

πrn

(1n − 1)z1n−1 cosπ
2 1n

. (2.14)

Here for later use we write separately then = 0 contribution(= z). Note that this term
yields a factor expz in G(z) for any spectrum{an} having asymptotic behaviour (2.4).

Equations (2.9) and (2.14) are rather general results giving lnG(z) exactly as an
ascending power series inz, and asymptotically as a series in 1/z. The coefficients of
both series are expressed in terms of theζ function A(s). Equations (2.9) and (2.14)
display very clearly howG(z) is constructed fromA(s). These results can be extended to
different spectra{an}, {bm} but we do not wish to do this here. Instead we proceed to the
inverse problem of determiningA(s) from G(s). This has been discussed in the physics
literature in [17] at a general level. More recently, the idea has been applied toζα(s) [11]
and to more complicatedζ functions constructed fromζα(s) [18].

Returning to equation (2.6) we note that

d

dz
ln F(z) = −2z

∑
n

(a2
n − z2)−1

Re s

{
z−s d

dz
ln F(z)

}
z=an

= a−s
n .
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Thus theζ function A(s) can be expressed as a Cauchy integral

A(s) =
∑

n

a−s
n = 1

2π i

∮
H

dz

{
z−s d

dz
ln F(z)

}
(2.15)

whereH is a hairpin contour enclosing (counterclockwise) the positivez-axis. Now expand
H until it becomes the perimeterD = L + C of the infinite half disk with vertical sideL
at Rez = 0 running from Imz = i∞ to −i∞, and infinite semicircleC bounding the right
half plane at infinity. We hold Res > 0 and sufficiently large thatC does not contribute to
the contour integral, leaving the integral representation

A(s) = 1

2π i

∫ −∞

∞
dy(iy)−s d

dy
ln F(iy)

= 1

π
sin

πs

2

∫ ∞

0
dy y−s d

dy
ln G(y). (2.16)

If one knows the functionG(y) well enough, one can evaluateA(s) from it using this
formula, without knowing explicitly the spectrum of zeros{an} of F(z). However, as it
stands, the integral (2.16) is not yet defined. We see from equation (2.14) that

d

dy
ln G(y) ∼

∞∑
k=0

(−)k
2

y2k+1
A(−2k) +

∞∑
n=0

πrn

y1n cosπ
2 1n

(2.17)

and consequently the integral (2.16) diverges aty = ∞ for Res > 0. Fortunately, this
problem is easily eliminated by using the identity∫ ∞

0
dy y−s = 0 if analytic in s (2.18)

to subtract as many terms as desired from the integrand in equation (2.16). Subtracting all
terms with 1/y to a power smaller than 2N + 1 we obtain the following representation for
A(s):

A(s) = 1

π
sin

πs

2
{IN(s) + PN(s)} (2.19)

IN(s) ≡
∫ ∞

0
dy y−s

{
d

dy
ln G(y) − 2(y − 1)

[ M∑
n=0

πrn

y1n cosπ
2 1n

+
N∑

k=0

(−)k
2A(−2k)

y2k+1

]}
−2N < Res < 2 (2.20)

PN(s) ≡
M∑

n=0

πrn

(s − 1 + 1n) cosπ
2 1n

+
N∑

k=0

(−)k
2A(−2k)

s + 2k
for all s (2.21)

where2(y) = 1 (or 0) for y > 0(y < 0). Here M is such that1M > 2N + 1. IN(s)

converges by construction aty = ∞ for Res > −2N , and aty = 0 for Res < 2
because lnG(y) ≈ y2A(2) + · · ·. PN(s) is defined throughout thes-plane. Note that in
equation (2.19) the poles and residues ofA(s) are present inPN(s) by construction, as are
the special valuesA(−2k). The real virtue of this formula is that it enables one numerically
to evaluateA(s) away from its poles and the pointss = −2k.

2.2. Bessel functions

We now specialize the preceding discussion to the Bessel function problem. Expressing
equation (2.1) asJα(z) = [zα/2α0(α + 1)]F(z) we find from equation (2.7)

ln Jα(z) − ln

[
zα

2α0(α + 1)

]
= −

∞∑
k=1

1

k

( z

π

)2k

ζα(2k). (2.22)
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Here an = jαn and A(s) = π−sζα(s) in the more general notation. Exponentiating
equation (2.22) and comparing with the power series

Jα(z) =
( z

2

)α ∞∑
k=0

(−z2/4)k

k!0(α + k + 1)
(2.23)

one easily obtains the first few special valuesζα(2n), n = 1, 2, . . .; e.g.

1

π2
ζα(2) =

∞∑
n=1

j−2
αn = 1

4(α + 1)

1

π2
ζα(4) =

∞∑
n=1

j−4
αn = 1

42(α + 1)2(α + 2)
.

(2.24)

Such series (given up ton = 10 in [3]) are known as Raleigh series [5]. Conversely, from
the special valuesζα(2n) and equation (2.22) one can recover the power series (2.23).

Recalling thatIα(z) = [zα/2α0(α + 1)]G(z) we find from equation (2.14)

ln Iα(z) − ln[zα/2α0(α + 1)] ∼ − ln
( z

π

)α+1/2
+ 2ζ ′

α(0) + z

+
∞∑

k=1

(−)k+1 1

k

(π

z

)2k

ζα(−2k) −
∞∑

n=1

(−)n
Rn

(2n − 1)
z
(π

z

)2n

. (2.25)

Here theRn are the residues ofζα(s) in equation (1.3). Also (to speed things up) we have
used the known special valueζα(0) = − 1

2(α + 1
2) in the first term on the right. We now

exponentiate equation (2.25) and compare it with the asymptotic expansion for fixed order
α:

Iα(z)
√

2πze−z ∼ 1 − 1

2z
(α2 − 1/4) + 1

2!(2z)2
(α2 − 1

4)(α2 − 9
4)

− 1

3!(2z)3
(α2 − 1

4)(α2 − 9
4)(α2 − 25

4 ) + · · · . (2.26)

From thez0 = 1 term one finds the special value

ζ ′
α(0) = 1

2
ln

[
2α0(α + 1)√

2πα+1

]
(2.27)

which evidently was not previously known. Theα → 1
2 limit of equation (2.27) is

ζ ′(0) = − 1
2 ln(2π) as it should be. A comparison of 1/z terms yields the residue

R1 = − 1

2π2
(α2 − 1

4). (2.28)

From the 1/z2 terms we find

ζα(−2) = − 1

4π2
(α2 − 1

4). (2.29)

Comparing 1/z3 terms yields

R2 = − 1

8π4
(α2 − 1

4)(α2 − 25
4 ). (2.30)

In this way one can systematically extract the pole residuesRn and special valuesζα(−2k)

from the asymptotic series (2.26) forIα(z), which is known to all orders. There are, of
course, other (closely related) ways to obtain these same quantities [1–4, 11].

In the appendix we list the residuesRn of ζα(s) for 0 6 n 6 7 and the special values
ζα(−2k) for 0 6 k 6 6. RegardingRn andζα(−2k) as known functions, and remembering
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thatA(s) = π−sζα(s), rn = π2n−1Rn, 1n = 2n and the connection betweenG(y) andIα(y)

we rewrite equation (2.19) as an integral representation forζα(s):

ζα(s) = πs−1 sin
πs

2
{IN(s) + PN(s)} (2.31)

IN(s) =
∫ ∞

0
dy y−s

{
d

dy
ln

[
2α

yα
0(α + 1)Iα(y)

]
−2(y −1)

[ N+1∑
n=0

(−)n
π2nRn

y2n
+

N∑
k=0

(−)k
2π2kζα(−2k)

y2k+1

]}
−2N < Res < 2 (2.32)

PN(s) =
N+1∑
n=0

(−)n
π2nRn

s − 1 + 2n
+

N∑
k=0

(−)k
2π2kζα(−2k)

s + 2k
. (2.33)

An equivalent integral representation was given in [11] (see also [18]). Equations (2.31)–
(2.33) will be tested numerically in section 5 forN -dependence (which appears to be weak),
and will be compared with the very different representation ofζα(s) derived in section 4
and seen to agree well wherever tested.

To check various things above we setα = 1
2. Equations (2.1) and (2.22) then become

the known formulae

sinz = z

∞∏
n=1

[1 − z2/n2π2] ln

[√
π

2z
J1/2(z)

]
= ln

[
sinz

z

]
= −

∞∑
k=1

1

k

( z

π

)2k

ζ(2k).

Also, equation (2.25) becomes

ln

[√
π

2z
I1/2(z)

]
= ln

[
sinhz

z

]
= − ln 2z + z + ln(1 − e−2z) ∼ − ln 2z + z

which agrees with the right-hand side of equation (2.25). Finally, equation (2.31) reads

ζ(s) = πs−1 sin
πs

2
{I0(s) + P0(s)} (2.34)

where

I0(s) =
∫ ∞

0
dy y−s

{
d

dy
ln

[
1

y
sinhy

]
− 2(y − 1)[1 − 1/y]

}
=

∫ ∞

0
dy y−s

{
2

e2y − 1
+ [1 − 2(y − 1)][1 − 1/y]

}
0 < Res < 2 (2.35)

and

P0(s) = 1

s − 1
− 1

s
= −

∫ 1

0
dy y−s

[
1 − 1

y

]
. (2.36)

Formally

I0(s) + P0(s) =
∫ ∞

0
dy y−s 2

e2y − 1
= 2s0(1 − s)ζ(1 − s)

so that equation (2.34) becomes the reflection formula forζ(s). However, equation (2.34)
with I0(s) andP0(s) as in equations (2.35), (2.36) is an explicit representation forζ(s) in
the strip 0< Res < 2 without analytic continuation.
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3. Perturbed spectra

Consider an arbitrary spectrum{λm} whose properties endow it with aζ function

Z(s) ≡
∑
m

λ−s
m Res > B > 0. (3.1)

According to general theoryZ(s) has poles only on the real axis, with the rightmost pole
at s = B > 0 and possible additional poless = B − 1n with spacings 0= 10 < 11 <

12 < · · ·:

Z(B − 1n + ε) = 1

ε
Rn + Cn + εDn + O(ε2) ε → 0 n = 0, 1, 2, . . . . (3.2)

The points = 0 is never a pole. If theλm are eigenvalues of an operator of orderd on a
manifold of dimensionN , thenB = N/d and1d = n/d.

Let us define a ‘perturbed’ version of the original spectrum to be any continuous
distortion of the individual eigenvalues

λm → λm(1 − δm) |δm| < 1 δm → 0 asm → ∞
which vanishes towards the upper end of the spectrum. In the QFT language mentioned in
the introduction, perturbing a spectrum may correspond to semihardening a hard boundary,
or altering the semihardening of an already semihard boundary. The effect on theζ function
(3.1) is to replace it by another one

Zδ(s) ≡
∑
m

λ−s
m (1 − δm)−s Res > B (3.3)

whose pole structure

Zδ(B − 1δn + ε) = 1

ε
Rδn + Cδn + εDδn + O(ε2) (3.4)

and other properties may differ greatly from those ofZ(s). However, the abscissa of
convergence Res = B or the positions = B of the rightmost pole and the residue
Rδ0 = R0 of this pole are certain to remain unaffected by the perturbation of the spectrum.
This is because the original and perturbed spectra are asymptotically the same. When the
perturbation of the original spectrum is removed (allδm → 0)Zδ(s) smoothly becomes
Z(s).

It is helpful to rewrite equation (3.3) in the form

Zδ(s) − Z(s) =
∞∑

k=1

0(s + k)

k!0(s)
fk(s)

= sf1(s) + 1

2
s(s + 1)f2(s) + 1

3!
s(s + 1)(s + 2)f3(s) + · · · (3.5)

where each term is a simple polynomial ins multiplying a function

fk(s) ≡
∑
m

λ−s
m (δm)k k > 1 for all s after analytic continuation (3.6)

which remains to be calculated. Here we have used the (convergent) binomial expansion∑
k of (1 − δm)−s followed by commutation of the (for Res > B convergent) mode sum∑
m through

∑
k which is allowable for Res > B. Once equation (3.5) has been reached

the continuation to Res < B is explicit as long as the functionsfk(s) can be continued
(and we henceforth assume this is possible). We also assume thefk(s) are meromorphic
functions having only simple poles, and illustrate this later with ourζα(s) example.
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Equation (3.5)—the central formula of this section—is not a deep result but it is
definitely useful, especially in the analytic continuation region Res < B where one typically
needs help in calculatingζ functions. The implementation of equation (3.5) of course
requires that one compute the functionsfk(s) in equation (3.6). Without becoming more
specific about the spectrum{λm} and its distortion{δm} one cannot really calculate further.
However, there are useful things to be said even at this general level.

Equation (3.5) is an expansion in the perturbation{δm} in its entirety.f1(s) is of order
{δm}, f2(s) is of order{δ2

m}, and so on. Asδm → 0 (for all m) thefk(s) all vanish. Thus for
a small perturbation it may be possible to approximateZδ(s) rather effectively by retaining
only a few terms in equation (3.5). One would do this in Res < B, not in Res > B.

An optimal situation arises when, as in the Bessel problem (1.2), the perturbation can
be expressed in terms of the unperturbed spectrum

δm =
∑
p>1

bpλ−cp
m c > 0. (3.7)

Here the coefficientsbp determine the perturbation. Thefk(s) can in such cases be expressed
in terms of the unperturbedζ function:

fk(s) =
∑
pi>1

bp1 · · · bpk
Z(s + cp1 + · · · + cpk)

= [b1]kZ(s + ck) + k[b1]k−1b2Z(s + c(k + 1)) + · · · . (3.8)

A good example of the utility of equation (3.5) is the special valueZδ(0). From
equation (3.5) and the assumed meromorphic nature offk(s) we easily find

Zδ(ε) − Z(ε) = [r1 + 1
2r2 + 1

3r3 + 1
4r4 + · · ·]q=0

+ε[( 1
2r2 + 1

2r3 + 11
24r4 + · · ·) + (c1 + 1

2c2 + 1
3c3 + 1

4c4 + · · ·)]q=0

+ε2[( 1
6r3 + 1

4r4 + · · ·) + ( 1
2c2 + 1

2c3 + 11
24c4 + · · ·)

+(d1 + 1
2d2 + 1

3d3 + 1
4d4 + · · ·)]q=0 + O(ε3) (3.9)

whererk, ck, dk andek are the functions defined (forq = 0) by

fk(q + ε) = 1

ε
rk(q) + ck(q) + εdk(q) + ε2ek(q) + O(ε3). (3.10)

Here the notation allows but does not requirefk(s) to have a pole ats = 0. If none of
these functions has poles ats = 0 then Zδ(0) = Z(0); the spectral distortion does not
affect this special value. This happens to be the case for the Besselζ function. More
generally, for spectra with the asymptotic behaviour (2.4) whoseζ functions have their
rightmost poles ats = 1, equation (3.8) shows that any perturbation (3.7) withc > 1 will
leave the special valueZδ(0) = Z(0) unchanged. However, this never happens for the
derivative

Z′
δ(0) − Z′(0) = [ 1

2r2 + 1
2r3 + 11

24r4 + · · ·]q=0 + [c1 + 1
2c2 + 1

3c3 + 1
4c4 + · · ·]q=0. (3.11)

Equation (3.9) yields a corresponding expression forZ′′
δ (0) − Z′′(0). Higher

derivatives are also computable. Certainly one is not limited to the accuracy
displayed in equation (3.9). If thefk(s) can be calculated, so canZδ(s) to similar
accuracy.

The same kind of analysis can be performed around any points. Of particular interest
for the Besselζ function are the pointss = 1, −1, −2 and−3. We write out the equivalents
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of equation (3.9) for these points:

Zδ(1 + ε) − Z(1 + ε) = 1

ε
[r1 + r2 + r3 + r4 + · · ·]q=1

+[(r1 + 3
2r2 + 11

6 r3 + 50
24r4 + · · ·) + (c1 + c2 + c3 + c4 + · · ·)]q=1

+ε[( 1
2r2 + r3 + 35

24r4 + · · ·) + (c1 + 3
2c2 + 11

6 c3 + 50
24c4 + · · ·)

+(d1 + d2 + d3 + d4 + · · ·)]q=1

+ε2[( 1
6r3 + 10

24r4 + · · ·) + ( 1
2c2 + c3 + 35

24c4 + · · ·)
+(d1 + 3

2d2 + 11
6 d3 + 50

24d4 + · · ·) + (e1 + e2 + e3 + e4 + · · ·)]q=1

+O(ε3) (3.12)

Zδ(−1 + ε) − Z(−1 + ε) = 1

ε
[−r1]q=−1 + [(r1 − 1

2r2 − 1
6r3 − 1

12r4 + · · ·) − c1]q=−1

+ε[( 1
2r2 − 1

24r4 + · · ·) + (c1 − 1
2c2 − 1

6c3 − 1
12c4 + · · ·) − d1]q=−1

+ε2[( 1
6r3 + 1

12r4 + · · ·) + ( 1
2c2 − 1

12c4 + · · ·)
+(d1 − 1

2d2 − 1
6d3 − 1

12d4 + · · ·) − e1]q=−1 + O(ε3) (3.13)

Zδ(−2 + ε) − Z(−2 + ε) = 1

ε
[−2r1 + r2]q=−2

+[(r1 − 3
2r2 + 1

3r3 + 1
12r4 + · · ·) − 2c1 + c2]q=−2

+ε[( 1
2r2 − 1

2r3 − 1
24r4 + · · ·)

+(c1 − 3
2c2 + 1

3c3 + 1
12c4 + · · ·) − 2d1 + d2]q=−2

+ε2[( 1
6r3 − 1

12r4 + · · ·) + ( 1
2c2 − 1

2c3 − 1
24c4 + · · ·)

+(d1 − 3
2d2 + 1

3d3 + 1
12d4 + · · ·) − 2e1 + e2]q=−2 + O(ε3) (3.14)

Zδ(−3 + ε) − Z(−3 + ε) = 1

ε
[−3r1 + 3r2 − r3]q=−3

+[(r1 − 5
2r2 + 11

6 r3 − 1
4r4 + · · ·) − 3c1 + 3c2 − c3]q=−3

+ε[( 1
2r2 − r3 + 11

24r4 + · · ·) + (c1 − 5
2c2 + 11

6 c3 − 1
4c4 + · · ·)

−3d1 + 3d2 − d3]q=−3

+ε2[(r3 − 1
4r4 + · · ·) + ( 1

2c2 − c3 + 11
24c4 + · · ·)

+(d1 − 5
2d2 + 11

6 d3 − 1
4d4 + · · ·) − 3e1 + 3e2 − e3]q=−3 + O(ε3). (3.15)

In each caserk = rk(q), . . . , ek = ek(q) for the appropriateq value in equation (3.8).
Obviously the sequence of formulae (3.12)–(3.15) can be extended tos = −4, −5, . . .. The
utility of these somewhat inelegant looking expressions will be apparent in the next section.

4. An approximation to the Bessel zeta function

Let us rewrite the McMahon expansion (1.2) as an exact formula

jαn/π = (n + a)[1 − δαn] + eαn

δαn =
∞∑

p=1

bp(a)(n + a)−2p a = 1
4(2α − 1)

(4.1)

whereeαn is an unknown function ofα andn which vanishes asn → ∞ faster than any
power of 1/n. Equation (4.1)defineseαn as the difference betweenjαn and its asymptotic
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series (1.2). This makeseαn computable numerically. These numbers happen to be very
small even for small values ofn (with the possible exception of large-orderα). In later
numerical calculations we shall consistently ignore theeαn. Nonetheless we carry them
along formally in the notation, to be reminded that these termsare present andcould be
evaluated, and for use in future work. All poles and residues ofζα(s) are totally independent
of eαn.

The form of equation (4.1) suggests that one view the Besselζ function ζα(s) = Zδ(s)

as a distortion of the Hurwitzζ function. In the notation of section 3 we chooseλn = n+a

so that the undistortedζ function

Z(s) =
∞∑

n=1

(n + a)−s = ζ(s, a + 1) (4.2)

is the Hurwitzζ function. Note the important properties ofζ(s, a + 1) (see e.g. [19]):

ζ(s, a + 1) =
∞∑

k=0

(−)k
0(s + k)

k!0(s)
akζ(s + k)

= ζ(s) − saζ(s + 1) + 1
2s(s + 1)a2ζ(s + 2) + · · ·

ζ(1 + ε, a + 1) = 1

ε
− 9(a + 1) + εζ (1)(1, a + 1) + · · ·

ζ(−n, a + 1) = −(n + 1)−1Bn+1(a + 1) n = 0, 1, 2, . . .

(4.3)

where9(a + 1) = 0′(a + 1)/0(a + 1) and theBn(a + 1) are Bernoulli polynomials. In
particular

ζ(0, a + 1) = −[a + 1
2] ζ ′(0, a + 1) = ln

[
0(a + 1)√

2π

]
ζ(−1, a + 1) = − 1

2[ 1
6 + a(a + 1)]

ζ(−2, a + 1) = − 1
3a(a + 1

2)(a + 1)

ζ(−3, a + 1) = 1
4[ 1

30 − a2(a + 1)2].

(4.4)

Now equation (3.5) becomes

ζα(s) − ζ(s, a + 1) =
∞∑

k=1

0(s + k)

k!0(s)
fk(s) (4.5)

where the functionsfk(s) remain to be calculated. From equations (3.6), (4.1)

f1(s) − 1f1(s) =
∞∑

n=1

(n + a)−s
∞∑

p=1

(n + a)−2pbp(a)

=
∞∑

p=1

bp(a)ζ(s + 2p, a + 1) (4.6)

where

1f1(s) ≡
∞∑

n=1

eαn(n + a)−s (4.7)

is a small, in principle computable, entire function ofs. It is entire becauseeαn vanishes
asn → ∞ faster than any power ofn can diverge. Thus the poles off1(s) all come from
the Hurwitz ζ functions in equation (4.6). The rightmost pole off1(s) is at s = −1 with
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residuer = b1, the next pole is ats = −3 with residuer = b2, the next ats = −5 with
residuer = b3 and so on. Continuing,

f2(s) − 1f2(s) =
∞∑

p1,2=1

bp1bp2ζ(s + 2p1 + 2p2, a + 1) (4.8)

where

1f2(s) ≡
∞∑

n=1

eαn(n + a)−s

{
2

∞∑
p=1

bp(n + a)−2p + eαn

}
(4.9)

is another small computable entire function. Again the poles off2(s) can be found by
inspection. The rightmost pole is ats = −3 with residuer = b2

1, the next pole is at
s = −5 and has residuer = 2b1b2, and so on. Now the general pattern is clear (recall also
equation (3.8)):

fk(s) − 1fk(s) =
∞∑

pi=1

bp1bp2 · · · bpk
ζ(s + 2p1 + 2p2 + · · · + 2pk, a + 1) (4.10)

has its rightmost pole ats = 1 − 2k with residuer = (b1)
k, its next pole ats = −1 − 2k

with residuer = kb2(b1)
k−1, the next pole ats = −3 − 2k, and so on.

A brief word on notation. A1 in front of any symbol, as in equations (4.8)–(4.10),
will always specify the contribution to this quantity from{eαn}. These small contributions
are never evaluated, as mentioned earlier, but with enough effort they could be.

A glance at equations (A.1) in the appendix shows that eachbp(a) has a simple zero at
a = 0:

bp(a) ≡ ab̂p(a) = a[b̂p(0) + ab̂′
p(0) + 1

2a2b̂′′
p(0) + · · ·] (4.11)

whereb̂p(a) is a polynomial ina. This simple zero has to be present because the spectral
distortion (4.1) vanishes ata = 0 (or α = 1

2). Consequently, equation (4.10) has the form

fk(s) − 1fk(s) = akf̂k(s) (4.12)

wheref̂k(s) is finite and nonzero ata = 0. Disregarding1fk(s) we see that equation (4.5)
has the nature of an ascending power series ina, with coefficientsf̂k(s) which also depend
on a in some nonpower fashion. One can, of course, expand thef̂k(s) in powers ofa to
obtain a pure power series.

Equation (4.5) together with equations (4.6)–(4.12) for thefk(s) comprise the main
result of this section: a formula forζα(s) which, if one knew all the polynomialsbp(a),
should be accurate. Because one does know these polynomials forp 6 7, equation (4.5)
should provide at least a good approximation toζα(s). Of course this will have to be tested.
In the remainder of this section we examine our approximation toζα(s) analytically, using
it to obtain (i) the first three pole residues and the finite parts of these poles, and (ii) the
special values ofζα(s) and (d/ds)ζα(s) at s = 0 and−2. In the next section we test our
approximation numerically.

First let us investigate the residues and finite parts of the poles ats = 1, −1 and−3.
The notationRn, Cn andDn is from equation (1.3).

s = 1 + ε. All rk(1) = 0 in equation (3.12) and consequently, given equation (4.3), we
find R0 = 1 and

C0(a) + 9(a + 1) =
∑
k>1

ck(1) (4.13)
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D0(a) − ζ (1)(1, a + 1) = [c1 + 3
2c2 + 11

6 c3 + 50
24c4 + · · ·]q=1 +

∑
k>1

dk(1). (4.14)

Hereck(1) = fk(1) is given by equations (4.6)–(4.10) withs = 1, anddk = dfk/ds|s=1. In
particular thek = 1 terms are

c1(1) − 1c1 =
∞∑

p=1

bpζ(1 + 2p, a + 1)

d1(1) − 1d1 =
∞∑

p=1

bpζ ′(1 + 2p, a + 1)

(4.15)

where the prime always means d/ds. The k > 1 terms are given by equation (4.10) and
can obviously be displayed in similar fashion. In our approximation we would keep the
terms 16 p 6 7 in equations (4.15) and in the similar formulae forc2,3,... andd2,3,.... The
functions C0, D0 will not be studied further here. However, they have effectively been
expressed as power series ina by equations (4.13), (4.14).

s = −1 + ε. In equation (3.13)r1(−1) = b1(a) and all rk(−1) = 0 for k > 1. Thus
R1(a) = −b1 = −(α2 − 1

4)/2π2. Also

C1(a) − ζ(−1, a + 1) = b1(−1) − c1(−1) (4.16)

where

c1(−1) − 1c1 = −b19(a + 1) +
∞∑

p=2

bpζ(2p − 1, a + 1). (4.17)

Moreover,

D1(a) − ζ ′(−1, a + 1) = [c1 − 1
2c2 − 1

6c3 − 1
12c4 + · · ·]q=−1 − d1(−1). (4.18)

s = −3+ ε. In equation (3.15)r1(−3) = b2 andr2(−3) = b2
1 with rk(−3) = 0 for k > 3.

The pole ats = −3 has residue

R2(a) = −3r1(−3) + 3r2(−3) = − 1

8π4
(α2 − 1

4)(α2 − 25
4 ).

Moreover,

C2(a) − ζ(−3, a + 1) = [r1 − 5
2r2]q=−3 + [−3c1 + 3c2 − c3]q=−3 (4.19)

where

c1(−3) + 1c1 = b1ζ(−1, a + 1) − b29(a + 1) +
∞∑

p=3

bpζ(−3 + 2p, a + 1)

c2(−3) + 1c2 = −b2
19(a + 1) +

∞∑
p1,2=1

exclude(1,1)

bp1bp2ζ(−3 + 2p1 + 2p2, a + 1)

c3(−3) + 1c3 =
∞∑

pi=1

bp1bp2bp3ζ(−3 + 2p1 + 2p2 + 2p3, a + 1).

(4.20)

Also

D2(a) − ζ ′(−3, a + 1) = 1
2r2(−3) + [c1 − 5

2c2 + 11
6 c3 − 1

4c4 + · · ·]q=−3

+[−3d1 + 3d2 − d3]q=−3. (4.21)

Clearly this procedure can be extended to the poles ats = −5, −7, . . . without difficulty
(except for the increasing algebraic complexity).
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s = ε. None of the fk(ε) has a pole atε = 0, so from equation (3.9) we have
ζα(0) = ζ(0, a + 1) = −(a + 1

2) = −(2α + 1)/4. From equation (2.27) and using
equation (3.11) andζ ′(0, a + 1) in equation (4.4) one finds

ζ ′
α(0) = 1

2
ln

[
0(4a + 2)

(2π)2a+10(2a + 1)

]
= ln

[
0(a + 1)√

2π

]
+

∞∑
k=1

fk(0) (4.22)

a closed-form result against which our approximation can be tested. Combining the
logarithms we rewrite equation (4.22) as a known power series

∞∑
k=1

fk(0) = 1

2
ln

[
0(4a + 2)

(2π)2a0(2a + 1)02(a + 1)

]
= a[2 − ln 2π ] + 1

2

∞∑
n=2

(−)nan 1

n
{ζ(n)[4n − 2n − 2] − 4n}

= a[2 − ln 2π ] + a2

[
5π2

12
− 4

]
+ O(a3). (4.23)

Does the left-hand side reproduce every term of this power series? Let us check the first
two terms. Becausefk(0) = 0(ak) we need only considerf1(0) + f2(0) on the left. From
equations (4.3), (4.6), (4.8) one finds in the notation of equation (4.11)

f1(0) − 1f1(0) = a
∑
p>1

b̂p(0)ζ(2p) + a2
∑
p>1

[−2pb̂p(0)ζ(2p + 1) + b̂′
p(0)ζ(2p)] + O(a3)

f2(0) − 1f2(0) = a2
∑

p1,2>1

b̂p1(0)b̂p2(0)ζ(2p1 + 2p2) + O(a3).

In the appendix̂bp(0) is given forp 6 7. One also needs

ζ(2n) = (−)n+1 1

2

(2π)2n

(2n)!
B2n

where theB2n are Bernoulli numbers. In particularζ(0) = − 1
2, ζ(2) = π2/6, ζ(4) =

π4/90, ζ(6) = π6/945, ζ(8) = π8/9450, ζ(10) = π10/93 555, . . .. Comparison with
equation (4.23) yields

2 − ln 2π = 0.162 123∼
∑
p>1

b̂p(0)ζ(2p) = 1
6 − 1

180 + 1
630 − 1

840 + 1
594 − 691

180 180+ 1
78 + · · ·

= 0.166 666, 0.161 111, 0.162 698, 0.161 508, 0.163 191, 0.159 356, 0.172 177

for pmax = 1, 2, . . . , 7 (4.24)

5π2/12− 4 = 0.112 335∼
∑
p>1

[−2pb̂p(0)ζ(2p + 1) + b̂′
p(0)ζ(2p)]

+
∑

p1,2>1

b̂p1(0)b̂p2(0)ζ(2p1 + 2p2)

=0.100 857, 0.112 322, 0.109 056, 0.111 377, 0.108 201, 0.115 323, 0.0 918 458

for pmax = 1, 2, . . . , 7. (4.25)

Evidently nonconvergent, both series reveal a fundamental property of our approximation:
it is asymptotic in the cut-off valuepmax of the sum overp.



6570 A Actor and I Bender

s = −2 + ε. In equation (3.14) all therk(−2) = 0 for k > 1 so that

ζα(−2) = − 1

π2
a(a + 1

2) = − 1
3a(a + 1

2)(a + 1) + [−2c1 + c2]. (4.26)

Hereζ(−2, a + 1) has been replaced by the polynomial in equation (4.4) and

c1(−2) − 1c1 ≡
∞∑

n=1

anh1n =
∑
p>1

bp(a)ζ(2p − 2, a + 1) (4.27)

c2(−2) − 1c2 ≡
∞∑

n=2

anh2n =
∑

p1,2>1

bp1(a)bp2(a)ζ(2p1 + 2p2 − 2, a + 1) (4.28)

where thehs are independent ofa. Equation (4.26) can be checked order by order ina. At
O(a)

1

6
− 1

2π2
= 0.116 006∼ −2h11 = −2

∑
p>1

b̂p(0)ζ(2p − 2)

= − 2

π2
[− 1

2 − 1
12 + 1

60 − 1
84 + 1

60 − 5
132 + 691

5460 + · · ·]
= 0.1013, 0.1182, 0.1148, 0.1172, 0.1139, 0.1215, 0.0959

for pmax = 1, 2, . . . , 7.

At O(a2)

1

2
− 1

π2
= 0.398 679∼ −2h12 + h22

where

h12 = [b̂′
1(0)ζ(0) − b̂1(0)] +

∑
p>2

[b̂′
p(0)ζ(2p − 2) − (2p − 2)b̂p(0)ζ(2p − 1)]

= − 0.2026, −0.1875, −0.1944, −0.1871, −0.2007, −0.1621, −0.3164

for pmax = 1, 2, . . . , 7

h22 =
∑

p1,2>1

b̂p1(0)b̂p2(0)ζ(2p1 + 2p2 − 2)

= 0.0169, 0.0158, 0.0161, 0.0159, 0.0162, 0.0155, 0.0180

for pmax = 1, 2, . . . , 7.

Again the asymptotic dependence onpmax is evident. From equation (3.14) we find

ζ ′
α(−2) − ζ ′(−2, a + 1) = [c1 − 3

2c2 + 1
3c3 + 1

12c4 + · · ·]q=−2 − 2d1(−2) + d2(−2)

which can be similarly evaluated.

5. Numerical calculations

Sections 2 and 4 present two very different formulae forζα(s). Both are quite complicated,
and it is important to know if these formulae agree numerically. If they do, then one can
be rather certain the numerical values obtained forζα(s) are accurate. We present in this
section a sampling of calculations which display the quite good agreement we have found in
our work thus far. Excepting [13],ζα(s) has not previously been studied numerically in the
literature. Hence these calculations serve the second purpose of providing new insight into
and information onζα(s) itself. We mention that it is possible to vary the approximation
(4.5) by varying thepmax used in the sums overp, and to vary the formula (2.31) by
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changingN . Either variation has visible but usually weak effects: the agreement between
equations (2.31) and (4.5) appears to be ‘robust’. However, there remain many ranges ofs

andα untested and it would be premature to say these formulae agree overall. Independently
of the integral formula (2.31), we can also test our approximation (4.5) against known special
values ofζα(s). This is done forζα(0), ζ ′

α(0) andζα(−2) and again equation (4.5) performs
well. All calculations based on equation (4.5) are done usingpmax = 7 unless otherwise
specified. All calculations based on equation (2.31) are done using the smallest possible
value of N . Throughout this section it will be convenient to use the parameterα (rather
thana).

5.1. Zeros ofζα(s)

The Besselζ function has zeros along the negatives-axis—infinitely many of them,
presumably. These have received no attention in the literature. Simple considerations
reveal that zeros must exist, and that their enumeration will not be a simple task. The
rightmost pole residueR0 = 1 shows thatζα(s) → ±∞ as s → 1± for all α > 1

2. The
residueR1 = −(α2 − 1

4)/2π2 < 0 of the pole ats = −1 shows thatζα(s) → ∓∞ as
s → −1± for all α > 1

2. The points = 0 lies midway betweens = 1 ands = −1, and
we know thatζα(0) = −(α + 1

2)/2 < 0, becoming more negative asα increases. Evidently
there can be no zero betweens = 1 ands = −1. However, betweens = −1 ands = −3
there are one or two zeros, depending onα. The residueR2 of the pole ats = −3 (see
equation (A.3)) is> 0(= 0, < 0) for α < 5

2(= 5
2, > 5

2). Therefore

ζα(s) → ± ∞ 1
2 < α < 5

2

∓ ∞ α > 5
2

s → −3 ± .

Moreover, we know that 4π2ζα(−2) = −(α2 − 1
4) < 0 for α > 1

2. Thus one can easily
draw a crude sketch ofζα(s) betweens = 1 ands = −3 without any calculation.ζα(s) has
no zeros between the poless = 1 ands = −1 for anyα > 1

2. For 5
2 > α > 1

2 there must
be two zeros between the poless = −3 ands = −1. For α > 5

2 there is only one zero in
this interval. Forα = 5

2 the pole ats = −3 disappears, but there continues to be one zero
betweens = −1 ands = −3.

Extending this sketch further to the left rapidly becomes more difficult. One has enough
information (the pole residues and special valuesζα(−2n)). However, the number of
possibilities becomes increasingly unwieldy. We therefore proceed to numerical analysis.

Figures 1–3 show the results of numerical evaluation ofζα(s) for α = 1, 5
2 and 3,

respectively, over the interval−6 < s < 0 using both representations ofζα(s). The features
described above are clearly displayed. One also sees how the slopeζ ′

α(s) depends onα at,
for example, the points = −2 which will be discussed below.

5.2. Finite parts of the poles ats = 1, −1 and−3

Here we are concerned with the finite partsC0,1,2(a) in equation (1.3) of the first three poles
of ζα(s). We have already calculatedC0,1,2(a) within our approximation, the results being
equations (4.13), (4.16) and (4.19). The corresponding formulae obtained from the integral
representation (2.31) are

Cn(a) − Rn(a) ln π = (−)nπ−2n[IN(1 − 2n) + P̃N (1 − 2n)] (5.1)

where P̃N (1 − 2n) is given by equation (2.33) with the term containingRn deleted. In
figures 4 and 5 we plotC0(a) versusa for 1

2 < α < 3 andα < 50, respectively, calculated
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Figure 1. Points: equation (4.5). Line: equation (2.32).

Figure 2. Points: equation (4.5). Line: equation (2.32).

Figure 3. Points: equation (4.5). Line: equation (2.32).

using both representations. The agreement is noteworthy. Figures 6, 7 and 8, 9 do the same
thing for C1(a) andC2(a). Again the agreement is excellent.
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Figure 4. Points: equation (4.13). Line: equation (5.1).

Figure 5. Points: equation (4.13). Line: equation (5.1).

Figure 6. Points: equation (4.16). Line: equation (5.1).

5.3. The pointss = 0 and s = −2

In the Taylor series

ζα(−2k + ε) = ζα(−2k) + εζ ′
α(−2k) + O(ε2) k = 0, 1, 2, . . . (5.2)
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Figure 7. Points: equation (4.16). Line: equation (5.1).

Figure 8. Points: equation (4.20). Line: equation (5.1).

Figure 9. Points: equation (4.20). Line: equation (5.1).

the Hawkins’ polynomialsζα(−2k) are known for the first fewk values. The derivatives
ζ ′
α(−2k) are not known analytically except fork = 0. Reproducing the Hawkins’

polynomials is a test for our representation (4.5). It is not a test for equation (2.31)
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which automatically produces the first term in equation (5.2). Here we calculateζ ′
α(0)

andζα(−2) within our approximation and compare the results with the known formulae for
these functions ofα.

s = 0. Figure 10 plotsζ ′
α(0) versusα for 1

2 < α < 3 calculated from the known result
(2.27) and from equation (4.22). Figure 11 does the same thing for the much larger range
α < 50. We intended to display the sensitivity topmax by plotting the right-hand side of
equation (4.22) forpmax = 3, 5, 7 over these same ranges ofα. However, these figures
show no discernible dependence onpmax.

s = −2. Figure 12 plotsζα(−2) = −(α2 − 1
4)/4π2 versusα for 1

2 < α < 3 and
does the same with the right-hand side of equation (4.26) which must reproduce this
simple function. We use bothpmax = 3 and 7 in equation (4.26). Note the quite good
agreement which improves slightly with increasingpmax. Figure 13 does the same thing
for α < 50 usingpmax = 3, 5, 7. Over this much greaterα range the dependence on
pmax becomes far more pronounced. As one would hope, the largestpmax yields the best
results.

Figure 10. Points: equation (2.27). Line: equation (4.22).

Figure 11. Points: equation (2.27). Line: equation (4.22).
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Figure 12. Points: exact value in equation (4.26). Solid line: right-hand side of equation (4.26)
with pmax = 7. Dotted line: right-hand side of equation (4.26) withpmax = 3.

Figure 13. Solid line: exact value in equation (4.26). Circles: right-hand side of equation (4.26)
with pmax = 7. Diamonds with dots: right-hand side of equation (4.26) withpmax = 5.
Diamonds with dashes: right-hand side of equation (4.26) withpmax = 3.

6. Conclusion

Our primary goal in this paper has been to gain computational control over the Bessel
ζ function in the analytic continuation region Res < 1. We reviewed previous results
on and analysis ofζα(s) including an integral representation (2.31), and we extended this
analysis from the spectrum{jαn/π} of Bessel function zeros to an arbitrary spectrum of
zeros{an} endowed with aζ function. We then derived a very different representation
(4.5) of ζα(s) by using the McMahon expansion (1.2) ofjαn. While not a new idea,
the approximation toζα(s) presented and investigated here goes far beyond previous
implementations. We explained how this representation is a quasi-power series in the
natural expansion parametera = (2α−1)/4. Some analysis of the first few terms in typical
power series was given to observe the power-series machinery in action. We then tested
the two representations ofζα(s) numerically, comparing them with one another for selected
s (resp.α) with α (resp.s) running over some interval. Also, we compared equation (4.5)
with known special values. Overall very good agreement was found. Changes in either
representation (i.e.pmax used in equation (4.5) or theN used in equation (2.31)) had
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a visible but generally small numerical effect, giving a sense of solidity to all of these
calculations.

In the course of our study much new information aboutζα(s) has been produced.
This includes the numerical results in section 5 onζα(s) itself, results on finite parts
of poles, on zeros ofζα(s), and so on. We could just as well have studied others

values and ranges. There is a great deal more work to be done on this very interesting
ζ function.

Returning to the physical background of this paper, we remind the reader that the
spectrum{jαn/π} arises in the parallel-wall Casimir problem (1.4) when the Bessel potential
VB(x) = (α2 − 1

4)/x2 is used to semiharden one of the walls. A different potential
would produce a different spectrum. By changingV (x) continuously one changes the
spectrum continuously. Equations (3.5)–(3.8) and indeed the entire analysis in section 3
were designed to exploit this continuity. Section 3 will be useful for future work on
boundary semihardening.

Only one-dimensionalζ functions have been considered in this paper. It is quite obvious
that higher-dimensionalζ functions can be constructed from{jαn/π} as well as from other
spectra. For example, the one-dimensional Schrödinger equation (1.4) can be replaced by
a three-dimensional one

[−1 + V (Ex)]φn(Ex) = w2
nφn(Ex). (6.1)

If V (Ex) = V1(x1)+V2(x2)+V3(x3) then equation (6.1) factorizes into three one-dimensional
equations

[
− d2

dx2
i

+ Vi(xi)

]
φin(xi) = k2

inφin(xi). (6.2)

If Vi(xi) = (α2
i − 1

4)/x2
i and we position orthogonal Dirichlet walls atxi = Li then the

system is a scalar field confined to a rectangular cavity with Bessel walls atx1,2,3 = 0 and
Dirichlet walls atx1,2,3 = L1,2,3. The momenta in equation (6.2) arekin = jαin/Li and the
spectrum in equation (6.1) is

w2
n = (jα1n1/L1)

2 + (jα2n2/L2)
2 + (jα3n3/L3)

2. (6.3)

Obviously one can do this in any number of dimensions. Theζ function constructed from
this spectrum is a generalization of the Epsteinζ function [19] in the same way thatζα(s)

is a generalization of the Riemannζ function. We hope to report on such semihard cavities
at a later time. For this it will be necessary to bringζ functions constructed from spectra
like (6.3) under adequate control.
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Appendix

The first seven coefficientsbp(a) in the McMahon expansion (1.2) ofjαn/π are given in
[9] as polynomials inα. We prefer to list them here as polynomials in the perturbation
parametera = (2α − 1)/4:

π2b1(a) = a[1 + 2a]

6π4b2(a) = a[−3 + a + 28a2 + 28a3]

30π6b3(a) = a[45 − 12a − 325a2 + 90a3 + 996a4 + 664a5]

840π8b4(a) = a[−9450+ 1395a + 64 554a2 − 11 627a3 − 143 920a4 + 33 768a5

+ 222 368a6 + 111 184a7]

2520π10b5(a) = a[396 900− 32 760a − 2 665 713a2 + 262 106a3 + 5 557 993a4

− 769 398a5 − 5 986 232a6 + 1 218 704a7 + 5 615 760a8

+ 2 246 304a9]

55 440π12b6(a)/a = −196 465 500+ 9 809 100a + 1 309 701 195a2

− 74 543 403a3 − 2 671 097 275a4 + 200 770 955a5

+ 2 676 828 308a6 − 303 476 228a7 − 1 697 033 360a8

+ 305 494 288a9 + 1 073 790 144a10 + 357 930 048a11

10 810 800π14b7(a)/a = 1 264 255 492 500− 41 566 486 500a − 8 393 930 663 625a2

+ 302 622 856 380a3 + 16 937 841 355 578a4 − 750 168 167 034a5

− 16 565 084 652 545a6 + 1 017 479 819 642a7 + 9 743 991 228 972a8

− 939 840 891 704a9 − 4 069 031 872 048a10 + 657 276 952 800a11

+ 1 858 726 993 984a12 + 53 106 485 5424a13.

(A.1)

In the notationbp(a) = ab̂p(a) we list the constants used in section 4:

p b̂p(0) b̂′
p(0)

1
1

π2

2

π2

2 − 1

2π4

1

6π4

3
3

2π6
− 2

5π6

4 − 45

4π8

93

56π8

5
315

2π10
− 13

π10

6 −14 175

4π12

7785

44π12

7
467 775

4π14
−199 935

52π14

(A.2)
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The pole residuesRn(a) of ζα(s) in equation (1.3) forn 6 7 are R0 = 1 and (see
[1–4, 11] forn 6 4)

2π2R1 = −(α2 − 1
4)

8π4R2 = −(α2 − 1
4)(α2 − 25

4 )

16π6R3 = −(α2 − 1
4)[α4 − 57

2 α2 + 1073
16 ]

128π8R4 = −5(α2 − 1
4)[α6 − 307

4 α4 + 54 703
80 α2 − 375 733

320 ]

256π10R5 = −7(α2 − 1
4)(α2 − 25

4 )[α6 − 619
4 α4 + 284 357

112 α2 − 2 215 391
448 ]

1024π12R6 = −21(α2 − 1
4)[α10 − 1165

4 α8 + 2 107 033
168 α6 − 38 525 995

224 α4

+ 214 409 317
256 α2 − 3 530 432 987

3072 ]

2048π14R7 = −33(α2 − 1
4)[α12 − 955

2 α10 + 1 716 029
48 α8 − 492 664 765

528 α6 + 28 503 421 893
2816 α4

− 743 923 184 891
16 896 α2 + 7 780 757 249 041

135 168 ].

(A.3)

All Rn for n > 1 vanish atα = 1
2. All Rn for n > 2 have additional zeros:

R2 = 0 at α1 = 5
2

R3 = 0 at α2
1,2 = 57

4 ∓ 2
√

34 or α1 = 1.609, α2 = 5.090

R4 = 0 at α1 = 1.512, α2 = 2.7732, α3 = 8.1715

R5 = 0 at α1 = 1.5008, α2 = 5
2, α3 = 4.0119, α4 = 11.6791

R6 = 0 at α1 = 1.5000, α2 = 2.49 004, α3 = 3.4531, α4 = 5.3388, α5 = 15.5683

R7 = 0 at α1 = 2.2500, α2 = 6.24 495, α3 = 11.9816, α4 = 19.0794,

α5 = 45.6863, α6 = 392.25 777.

The Hawkins’ polynomialsζα(−2n) for n 6 6 are (see [1–4, 11] forn 6 4)

2ζα(0) = −(α + 1
2)

4π2ζα(−2) = −(α2 − 1
4)

4π4ζα(−4) = −(α2 − 1
4)[α2 − 13

4 ]

4π6ζα(−6) = −(α2 − 1
4)[α4 − 53

4 α2 + 103
4 ]

4π8ζα(−8) = −(α2 − 1
4)[α6 − 135

4 α4 + 3771
16 α2 − 23 797

64 ]

4π10ζα(−10) = −(α2 − 1
4)[α8 − 137

2 α6 + 9063
8 α4 − 191 957

32 α2 + 2 180 461
256 ]

4π12ζα(−12) = −(α2 − 1
4)[α10 − 485

4 α8 + 12 425
32 α6 − 2 979 523

64 α4

+ 27 234 823
128 α2 − 72 763 141

256 ]

(A.4)
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